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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2553

PITCHING~MOMENT DERIVATIVES Cmq AND Cmd AT SUPERSONIC
SPEEDS FOR A SLENDER-DEITA—WING AND SLENDER~-BODY
- COMBINATION AND APPROXIMATE SOLUTIONS FOR
BROAD-DELTA-WING AND SIENDER-~
BODY COMBINATIONS

By Arthur Henderson, Jr.
SUMMARY

The pitching-moment derivatives Cmq and Cmd at supersonic speeds

~ are developed for a slender-delta-wing and slender-body combination

having no afterbody. By drawing an analogy between the aerodynamics of
the wing-body section of the combination and the aerodynamics of a delts
wing alone, the results for the slender-delta-wing and slender-body com-
bination are modified to the extent that approximate solutions for Cmq

and Cmd for broad-delta-wing and slender-body combinations can be
obtained.

INTRODUCTION

Various methods, based on linear theory, for obtaining solutions
for the flow about wing-body combinations have been developed for the
determination of the 1ift and moment due to angle of attack. Refer-
ences 1 to 7 comprise a fairly comprehensive list of most of the signif-
icant of these methods, which include both approximate and exact solu-
tions. All the exact solutions to the linearized differential equation
of steady supersonic flow, however, employ iteration processes, infinite
series, or both, and their practical application results in approximate
solutions although the error is often negligible, depending upon the
particular problem, rate of convergence, number of iterations, and so
forth. Spreiter (reference 7) has presented solutions in closed form
to the two-dimensional Laplace equation of potential flow for the 1lift
and moment of wing-body combinations. These solutions apply to the super-
sonic range for the limiting case of a slender wing-body configuration.
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For the stability derivatives of wing-body combinations, there are
a few papers on the damping-in-roll characteristics (see, for example,
references 8 and 9) but none for the damping in pitch.

The purpose of the present paper is to extend the method used by
Spreiter in reference 7 to the calculation of the pitching-moment deriva-
tives due to constant rate of pitch Cmqe and due to constant accel-

erated motion in the vertical direction Cma) for a slender-delta-wing

and slender-body combination. In addition, an approximate solution to

these derivatives is developed for a broad-delta-wing and slender-body

combination in supersonic flow by introducing certain modifying factors
into the slender-delta-wing and slender-body results.

Certain conditions are placed upon the configuration. The body
ahead of the wing is slender, has a circular cross section, and is
pointed at the nose, and the slope of the body meridian section is
continuous. For the wing-body section, the wing semiapex angle i1s small;
along the wing-body juncture, the body radius is a maximum and is con-
stant; and finally, the configuration has no afterbody (see fig. 1).

SYMBOLS
3,0 potential functions
Yoy stream functions
Z complex variable (y + iz)
R body radius (R = R(x) on body ahead of wing and R = a along
wing-body section)
é body radius along wing-body section
8 y-coordinate of wing leadihg edge
W velocity in positive z-~direction
r,68 polar coordinates
q constant angular velocity of pitch
o constant time rate of change of angle of attack (%-%%)
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perturbation pressure (difference in pressure between body
surface and free stream)

density of fluid

time

Cartesian coordinates

free-stream velocity

point of rotation measured from nose
inward-drawn unit normal vector
pitching moment

area of basic wing (including portion enclosed by body)

pltching-moment coefficient M

%pveAE

nondimensional stability derivative due to constant rate of

m
h _—
pitc e

v/ q—>

nondimensional stability derivative due to constant accelerated
Cm

'aac
oV/a—> 0,

motion in vertical direction

root chord of basic wing

mean aerodynamic chord of basic wing (% )

root chord of exposed wing
total length of wing-body configuration

semiapex angle of basic wing
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N
So value of s at x = X5 or at cg
Smax paximum value of s (value of s at x = 1)
Co point of rotation measured from apex of basic wing; positive
in positive x-direction
e,f
:m,g, interference factors
M Mach number .
B = M2 -1
K = tane
Q constant of integration
k = =2
Smax

E'(BK) complete elliptic integral of second kind

n/2
f V(—(l - 8%®2)sinPo a6
0

F'(BK) complete elliptic integral of first kind

f Vi - (1 - p%2)sino
0

A = 1 - p%?

(1 - 2B2K2)E'(BK) + B2K°F! (BK)

Ay = = |

2 = §7(pK)

v o-3+282, 30 +p2),

3 52 2 52 1
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Subscripts:

W wing

B body

g due to q
& due to &

ANATYSIS

The linearized differential equation of steady supersonic flow is

2 2 ‘ o
g2 3P 3P _1 gg 1o,

ox2 dr2 T 2 392

At present an exact solution to this equation does not exist in closed

2
form for wing-body combinations. However, if the term B2 %—% becomes
X
very small with respect to the other terms of this equation, it may be

neglected. Solutions to the Laplace equation which results from dropping

2 .
the term BQ g—g have been found in closed form for the lift and moment
: X

due to angle of attack (reference 7). It has been found that the condi-

2
tion necessary for 62 %—g to be negligible for the angle-of-attack case

X
is that the configuration be slender and that 82 be not excessive. For
a delta-wing and body combination, the term slender implies that %%,

d°R
—% and K are very small.
ax

In the present paper, which treats the steady-pitching and the
time-dependent, constant-acceleration cases of delta-wing and body
combinations, a velocity potential satisfying the two-dimensional
Laplace equation is used. In the appendix it is shown that the conditions
to be satisfied for the Laplace solution to be applicable to the super-

dR  d°R
sonic range are that X K, g, and & be very small.
X ax )
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After a velocity potential which satisfies the Laplace equation is
found, the next step in the analysis i1s the determination of the pressure
distributions over the slender-delta-wing and slender-body combination
resulting from the two types of motion which give rise to Cmq and Cmd’
namely, constant rate of pitch and constant accelerated motion in the
positive z-direction, respectively. When the pressure distribution is
known, the moment may be calculated about any axis of the configuration,
and, from their respective definitions, Cmq and Cm& may then be deter-

mined. The configuration to be considered and the coordinate system
employed are shown in figure 1.

Velocity Potential

Spreiter (reference 7) shows that the complex potential for a
uniform stream of velocity w at infinity flowing vertically downward
over a stationary two-dimensional circular cylinder symmetrically located
on a horizontal flat plate is

¢'+.'_i i R—2-2- 3-621/2 . !,
iy' = iw + 7 s + . A (1)

where

Z =y + 1z

R radius of cylinder

8 semispan of plate measured from center of cylinder

For a slender configuration describing a slow, steady pitching
motlon, the cross-flow velocity distribution is, to the first order,
proportional to =x. Inasmuch as potential flow 1s assumed, this velocity
distribution must be looked upon as being generated by the motion of the
configuration in fluid which is at rest, because, if the distribution
were due to the motion of the fluid about a stationary body, the flow
must be rotational and the assumption of potential flow is then violated.

The compiex potential of the aforementioned configuration moving
upward through still air with the vertical velocity w then is

' . 5]1/2
§ + iy = iw (Z+R;>-(s+-3§> -z (2)




NACA TN 2553 | 7

Transforming to polar coordinates (Z = r(cos 6 + 1 sin 6)) and solving
for the velocity potential gives

+ 4RMcos200 - 2

1/2
¢ S 1 <;8 + R8 + 58 + R8 rLL + Ru sl‘L + Rh cos 29) _

e mn ol 2 g2
1/2
N L L N
TR os 2o + EER -r sin 8 (3)
r s

Equation (3) is the general expression for the velocity potential.
Whether ¢ pertains to the constant-pitching or the constant-acceleration
case .depends upon the value of w. For a wing-body configuration pitching

about a point X, from the nose, the vertical velocity w varies along

the length of the configuration according to w = q (x - xo). For con-

‘stant acceleration in the positive z-direction, the velocity varies with

time according to w = avVt. ‘
Pressure Distribution

The equation for the pressure distribution is

1(3

2
The term 5(5%) does not contribute to either the 1ift or moment since

on the body it is symmetric and on the wings, although gg is antisym-~
T

2
metric, <%Q) is symmetric; therefore, for the configurstion considered,
r

P = p<V %g + gg) (5)

For the case of pitching with constant angular wvelocity,

3 )

o)
o = (e 2 Fage Py o) 8
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and for constant acceleration, evaluated at time t = O, »
P, =0 5——8% (7)
a t _ ‘

In order to determine the loading over the wing-body combination as -
given by equations (6) and (7), the pressure distributions in two regions
must be considered for each expression. They are:

(a) Pq,q on the body where r = R

A

0 and a§r

b) p & on the wing where 6 s

d,
For the pitching wing-body combination with w = q(x - xo) and the
preceding conditions, equation (6) gives for the pressure over the body
and wing, respectively,

Rs sin 6 + Msh + R* - 2R2s2cos 26

(pQ)B - -qu[ s + | . | ,f-l‘

(x - x0)(s¥ - Rh} ds_ (g'a)

2R(x-x9)(R2- s2c0s 26) @R,
ax

d
sl/sl* + Rl* - 2R232cos 20 x szl/s)'L + RlL - 2R2s2cos 26

l/(:r'2 - se)(Rl‘L - 'rgsg) oR3(x - xo)(r2 - 52) R
by = -pV + — +
( q)w o re rsl/(r2 - sg)(Rb’ - rESE) ax

r(x - XLL)QS)-L - Ru) ds | ‘ (8b)
52(/(1'2 - 32)(R11- - r232) ax

Similarly, for the case of constant acceleration, in which w = Vot 1
used, equation (7) yields

o V%« B¥ - oRRsPcos 26 - Re sin 6
(v)p = -pV& 5 (92)
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Cmq and Cmd, for Slender-Delta-Wing and Slender-Body Combinations
The moment on the wing-body configuration measured about a point xj
from the nose is
M=f(x-xo)ﬁ.pdA (10)
A
where n is an inward-drawn unit vector, normal to the surface, and A
represents the surface area of the configuration. Now
M
. Cp =7 5 _
=pV=Ac
2
v
C. = -BCm = §_<ﬂ_
m = —==
RN 9\pVAT
2v
and
oc S [ M,
Cmtl = —_— = =
3% da\pVAT
2v

Therefore Cmq and Cmo'r, are respectively,

3 i fl-c'f&t
Cp = (x - x5)(pgq)pR sin 6 @6 dx +
Mg yq pVAEE 0 0 ( Q>B

. . 1 /2 .
ﬁ-crj"‘ (x - Xo)(Pq)BR sin 6 30 dx + |
f f (x - Xo)(Pq)W dr d% (11)
l-c' Ja
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3 L \/fl-c' o1 | )
. = (x - x5)(pg)pR sin € @6 dx +
To o\ yas® | Jo 0 (7

1 /2
4 J[\ J[ﬂ (x - Xo)(Pd)BR sin 6 d6 dx +
1-c'Jo
Z . N
f fE (x - x0)(pg)y dr d% ’ (12)
l-c'Jda

where the first integral in each expressioh is the contribution of the
body ‘ahead of the wing and the last two in each expression are the

contributions of the wing-body section.

C

The conditions to be imposed in evaluating these integrals are:

(a) On the body ahead of the wing, s =R

(b) On the body at the wing-body sectlion, R = a and = 0

(c) On the wing, %; Constant = tan ¢

Integration of the terms for the wing-body section of the configuration
may be simplified by making the substitutions for x and X which are

suggested by condition (c). Since %% = tan €,

s = X tan € + Q

where Q 1is a constant. Therefore,
8 - Q

tan ¢

SO-Q

0 " tan €

X =

ds
tan ¢

dx =




where

373 k
_q1 .32 _ 11 .,3.9.4
£f=1 k = K+ £ k

h=1- 42+ (3 + b logg %)k“

m=1 - 6k2 + 8k3 - 3K*

The variation of these interference factors with k
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<
' and the limits of integration are now from s =a to s = Smax+ From
the geometry of the configuration (see fig. 1), Bpax = C tan € and
S5 = Co tan ¢, where c¢o 1s the location of the point of rotation
measured from the apex of the basic wing, positive in the positive
x~-direction.
Performing the operations indicated in equations (11) and (12) and
substituting limits, sp.4 =C tan ¢, and sy = Co tan € results in
1-c' l1-c!
Cm. = - %gl (x - xo)dex - B (x - %x5)°R dR gx -
q A2° Jo 222 o ax
6 t 2 e - 22 ] + bx ta ) f e} (13)
an €\g T3 ne = -F8
=-C' '
L 2 9 o
. Cy = - == (x - x5)R%dx - 2% tan ¢ z h-2m (14)

is shown in figure 2.
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Equations (13) and (14) are the expressions for Cmq and Cmd, for

a slender-delta-wing and slender-body combination corresponding to the
conditions stipulated. When these terms are added to obtain the damping-
in-pitch parameter Cmq + Cmd,’ integration by parts allows the resulting

expression to be written as

| 2
Cmq+Cmd=-2;2 El-c') -Xo:l2-6rrtane(-g-e-%o-f>+

C

Co CO 9 CO
hntans?(f--_-_—g> -2ntane(8.h--€-m> (15)

Again, from the geometry of the configuration, when k ;é 1,

(2 -c") -xo=—<co—tai€>

This relation allows equation (15) to be written as

c c \2 ' ¢
=-hnk2tane%k2-3k-—cﬁ+(=c—9>jl -6ntane<g—e-—-69f>+

Co So _ 24 . So
Lx tan e 'E'(f - = g> on tan €<8 h - = > (16)
When k =1, the wing span goes to zero, and for a slender body of

revolution
_ oA ! (x - x,)R°dx - S Z (x - yeR R ax (17)
Mg = 7 ag@ |y o 222 o ¥o/ % ax
wx [V )

Cpe = - —= (x - x5)R7ax (18)
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and

(1 - %)? (19)

where A and C represent some characteristic area and length, respec-
tively, of the body. Equation (19) agrees with Miles' result (refer-
ence 10) if A = 7a® and ¢ = 1.

" When R =a = 0, the body radius goes to zero, and for a slender
delta wing

C .
Cmq = -61 tan e(% - —6.9> + Un tan ¢ %—.9<l - E.CS—> (20)
. 9 Co
Cmg, = -27 tan e(—B— - = (21)

which are the expressions for Cmq and Cmd for the slender delta wing
found by Ribner (reference 11).

From these equations for Cmq and Cmd the terms for the wing-

body section of a slender-delta-wing and slender-body combination are
seen to be in the seme form as Cmq and Cmd for the basic wing alone.

Each term of the equations for the basic wing alone is modified by a
factor which is a function of the ratio of the body diemeter to the
maximum wing span. This modification is due to the interference effects
which result from placing a slender body on a slender delta wing.

Cmq and Cmd for Broad-Delta-Wing and Slender-Body Combinations

From practical considerations, solutions for Cp and Cmd for

broad-delta-wing and slender-body combinations in supersonic flow are
desired. A method of obtalning an approximate solution to this

problem from the preceding development 1s suggested by the similarities
between the expressions for the slender delta wing alone and for the
slender-delta-wing and slender-body section of the configuration. An
intuitive approach would be to assume that a delta-wing and slender-

body section, in going from a slender-delta-wing and slender-body sectlon
to a broad-delta-wing and slender-body section, follows the same laws
that a delta wing alone follows in making the same transition (see the
next section for a discussion of the validity of this assumption).
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Investigations by Brown and Adams (reference 12) and by Ribner and
Malvestuto (reference 13) made after the publication of Ribner's paper
on the stabllity derivatives of slender delta wings (reference 11) show
that the stability derivatives of broad delta wings in compressible
supersonic flow such that B tan € < 1 are the same as the results for
the slender delta wing multiplied by certain elliptic integrals which
are functions of the wing semiapex angle and the Mach number of the flow.
Applying these laws to the wing-body section gives

yy [00C o 8x [ 2. dR
Cp = - — (x - x5)RAx - — (x - x4)°R =— dx -
mq A2 0 *o AT2 0 , ° dx
9 Co o o
A167 tan €<g e - = f) + Mot tan e‘??Cf -=38 (22)
1-c! : c
Cnﬁ‘= o A (x - xo)Rde + x32n tan ¢[2h - Cm (23)
AC2 8 c

where A1, A2, and X3 are the appropriate elliptic integrals (see
fig. 3). The damping-in-pitch parameter is

: C c_\2 C
Cmq + Cmci = -lmke tan GE% k2 - 3k —%O— + (_59>] - xl6n tan e(-g- e - 'Z_:‘?' f) +

c c c
Apln tan € -E-q(f - ?O g) + Mg2n tan e(% h - -0.8119 (24)

In order to determine approximate expressions for Cp and Cmd

for the configuration when the wing leading edges are supe%sonic

(B tan ¢ > 1), the analogy drawn previously between the laws followed

by a broadening delta wing alone and a broadening-delta-wing and slender-
body section is continued into the region where B tan € > 1.

As a delta wing alone continues to broaden to the extent that
B tan € > 1, +the equations for Cmq (see reference 12) and Cmd are
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__8(9 . %), 8%, _ %
Cmy E(B <':'>+B E(l 'E) (25)
_ L9 Co)
Cm&_;(g'?) (26)

(Cmd was Obtained by use of equation (15) in reference 13 and agrees
with Miles' result (reference lh).) Therefore the derivatives for s

broad-delta-wing and slender-body combination in supersonic flow, such
that B tan ¢ > 1, may be approximated by

1-c! -c!
Ly 8n : dr
C, = - — (x - x,)R%ax - = (x - x.)°R & ax -
T 422 o i we? Jo o
8(9 o 8 Co Co .
and
Lx -c! o 4(9 S >
Cpe = - — (x - x4)Rax + Zh - =m (28)
mg, A2 o *o B3 8 C

provided the body ahead of the wing-body section remains slender with
respect to the Mach cone emanating from its nose.

Because of the nature of the factor X3 and the values of Cm
and Cmd for B tan € > 1, a general curve, such as Cmq + Cmd

plotted against B tan €, cannot be drawn. Certain basic delta wings
have therefore been chosen and curves of Cp + Cmo.L plotted against M

have been drawn for different values of k. These curves are presented
in figure L.
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DISCUSSION AND CONCLUDING REMARKS

By an extension of the method used by Spreiter in reference T the

pitching-moment derivatives Cm and CmdL for supersonic speeds have

been developed for a slender-delta-wing and slender-body combination
having no afterbody. By drawing an analogy between the aerodynamics of
the wing-body section of the configuration and the aerodynamics of a
delta wing alone, the results for the slender-delta-wing and slender-
body combination were modified to the extent that approximate solutlons
for Cp and Cmdb for broad-delta-wing and slender-body combinations

were alsoc obtained.

In order to check the validity of the reasoning used 'in arriving at
the assumption by which the approximate solutions were obtained, the same
reasoning was applied to Spreiter's results for the lift-curve slope CLu

of a wing-body combination for which an exact solution to the linearized
supersonic-flow equation also exists (reference 6).

In reference 6, Browne, Friedman, and Hodes have presented an exact
solution to the linearized equation of steady supersonic flow for a
delta-wing and slender-conical-body combination for which the apexes are
coincident. Spreiter (reference 7) has presented a solution to the two-
dimensional Laplace equation for the same configuration. In order to
obtain some indication as to the religbility of the assumption made, the
same reasoning was applied to Spreiter's results for CL1 of the delta-

wing and conical-body configuration as was applied to the Cmq and Cmd

results of this paper, and the modification of Spreiter's results were
then compared with the results of reference 6. The results of this
comparison are shown in figure 5 wherein BCLOb is plotted against

8 tan ¢ for different values of k. For k = 0.70 the curve from
reference 6 is incorrect for high values of P tan ¢ Dbecause an insuf-
ficient number of terms of the series results were taken.

From the results of this comparison it appears that values of Cmq
and C,. for broad-delta-wing and slender-body combinations will give

ms
fairly good approximations up to at least k = 0.50.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., August 21, 1901
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APPENDIX
CONDITIONS FOR LAPLACE SOLUTION TO APPLY TO SUPERSONIC RANGE

2 2 2 2 3\2
- 20 oM 3¢ M® 3¢
In the limit, as B =2 Sx ou and -—V2 o2 approach zero,

a solution to the two-dimensional Laplace equation

¢ 138, 13
32 T or r2 362

is a solution to the linearized equation of supersonic flow

2 2 2 2 2 2 N2
Beéjé_a_ﬁ_;gg_l_ew 247 o%g M- o

32 dr2 T 3r2 V ox ot ;,E 32
] Therefore these two equations are compatible if the above limiting con-
ditions are satisfied.

. In equation (3) a solution to the two-dimensional Laplace equation
‘ is given as :

¢ = ¢(WJR: s,r,e)‘ (29)

where = R(x) and s = s(x) = Kx + Q. If, for the present, the assump-
tion is made that w = w(x,t), from. equation (29)

I (_a_‘»_f)ﬂﬁ(a_zz) f@(a )2+2<ig;@@.+_afg.a_wgﬁ+
X ow OR ox dx

3¢  owl ox 3R2 \OX Jg2\0 Ox dx Ow Os
52¢ dR ds +§Q8_2_E+§_Q_d2R+§QdES | (30)
OR Js dx dx V32  OR gx2 08 4.2

aeg Ow dR , 02¢ ow ds , of %
W RB?E}?+ W sb_dx+5g5x5t (31)

xlo/
o
ot

I
Qv
5 1o
o

(oY
N
(%
=
+
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and

d2¢ _ % %
g‘é ) 522(3}0!) v 362 - (32)

For constant rate of pitch, v =w(x) = a(x - x5), and from
equations (30) to (32)

o2 ar\2  d°¢ .o 32 R
p? g.‘g-ﬁ —Q —Q(Q + 2Lk +2(5;r§§qa;z+

5R2 ds?
o Fhx ) B 0
2 _3% _,
x ot atE

For constant accelerated motion in the vertical direction,
w(t) = avt, and from equations (30) to (32)

52 3B _ g2 _Q(> —QK2+25—4§—K SQdEIS‘J

S 3R®

T

/

An examination of equations (33) and (34) shows that, in order for
the Laplace solution to be a solution to the linearized equation of

2

supersonic flow, &R 4R K, g, and o must approach zero.

2 2
dx” g2
Within the fremework of the small-disturbance theory, however, such
stringent conditions as these are not necessary for the Laplace solution-
' 2
to apply to the supersonic range. Rather it is required that QB, g—g,
ax
- dx
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|
. 2
K, q, and a be of such an order of magnitude that [32 g—g,
2 M-g— FBE% and b-f— —8—2-9 be negligibly small compared withxthe remaini
terms of the linearized equation of supersonic flow.
]
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Figure 4.- Continued.
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